

De Notre Dame au Panthéon

La modélisation mécanique pour la conservation et la comprehension du patrimoine monumental

Paolo VANNUCCI

UVSQ, Versailles, 21 Mars 2022

Avant-de commencer: les remerciements

- Ce séminaire concerne des recherches faites sur le Panthéon de Rome et sur Notre Dame à partir de 2015
- Certaines de ces recherches ont été faites en collaboration avec F. Masi, maintenant à l'Université de Sidney, et I. Stefanou, EC Nantes, ou avec B. Desmorat, Institut d'Alembert.
- La recherche sur l'action du vent est une collaboration avec l'I2M (E. Panettieri et M. Montemurro) et l'Université de Florence (C. Mannini, T. Massai, M. Ferrucci); l'aide de L. Frèrejean (LMV) a été dans cette aventure très précieuse.
- Mes remerciements vont à tous ces amis et collaborateurs.

Plan

- 1. Mécanique et monuments
- 2. Actions extrêmes: explosions
- 3. Actions extrêmes: vent
- 4. La mécanique comme instrument d'archéologie synthétique

Mécanique et monuments

 $v_o \!=\! 222 \, \, \mathrm{km/h}$

 $v_o\!=\!148~{\rm km/h}$

La mécanique: c'est quoi?

Les mêmes pères... et mères

De quoi s'occupe-t-elle la mécanique?

CM

18

Structures

Acoustique

Energie

Environnement

Fluides

Robotique

Biologie

7

La mécanique et le patrimoine

- Plus récemment, la mécanique participe à l'étude du patrimoine, d'abord avec des études sur les structures, plus récemment aussi sur les peintures etc.
- La première action dans ce sens concerne le dome de San Pierre (1742, R. G. Boscovich, T. Le Sueur, F. Jacquier)

Nos recherches

- Nous avons utilisé la simulation numérique appliquée à la mécanique des structures et des fluides pour différentes études sur le patrimoine
- Objets des recherches:
 - Notre Dame (2016 JNM, 2016, classifié; 2019 Eng Str, 2021 J Cult Herit, 2022 TEMA, 2022 Int J Arch Herit)
 - Panthéon de Rome (2018 Eng Str, 2018 Eng Fail An)
 - Statues (2019 Int J Mech Sc, 2020 J Cult Herit)

Motivations des recherches

- Ces recherches étaient motivées par deux raisons:
 - étudier la vulnérabilité des monuments aux actions extrêmes: explosions et tempêtes de vent
 - essayer de mieux comprendre la pensée structurale et la connaissance technique des anciens

2

Actions extrêmes: explosions

La menace iconoclaste

 Objectif de l'étude: comprendre les mécanismes de ruine et concevoir les protections nécessaires par la simulation numérique des explosions et de leurs effets

Le Panthéon: un monument emblématique

 Bâti par l'empereur Adrian entre 118 et 128 a. C. c'est probablement l'oeuvre d'Apollodore de Damas

Le Panthéon, un tribut à Archimède?

pronaos Rotonda

The *Rotonda* internal sphere according to Wilson-Jones

The *Rotonda* internal sphere according to de Fine Licht

Etude d'une explosion au centre de la Rotonda

- Simulation: méthode CEL (Coupled Eulerian Lagrangian) pour la simulation de l'explosion: volumes finis pour l'air et éléments finis pour la structure
- Au total: 13.14x10⁶ dof (10.34x10⁶ FV+2.8x10⁶ FE).
- Le modèle FEM comprends les caissons et les 14 grandes fissures du dome

La simulation des matériaux

0,2

0,1

0

0

0,05

0,1

0,4

0,35

0,2

mm

0,25

0,3

0,15

Gran

Mécanisme d'action de l'explosion

- La géométrie de la Rotonda engendre une focalisation à haute vitesse des ondes de choc, primaires et réfléchies
- Quand la focalisation passe à travers l'oculus, les tractions produites fracturent le dome; le poids fait le reste

Evolution de la surpression due à l'explosion

18

3

Actions extrêmes: vent

Motivation de la recherche

- Le dérèglement climatique produit des tempêtes de vent de plus en plus fortes et fréquentes
 - 15 Octobre 1987: 220 km/h à Cap Finisterre
 - 26 Décembre 1999: 169 km/h dans Paris

Effets sur les patrimoine bâti

- 1976: clocher de Saint Bonifatius à Leeuwarden (Pays Bas)
- 12 Janvier 2017: la tempête Egon détruit la rosace de la Cathédrale de Soissons
- De par leur hauteur, les cathédrales gothiques sont particulièrement exposées

21

Fonctionnement statique d'une cathédrale gothique

- Une cathédrale gothique est un organisme délicat, dont l'équilibre repose sur une collaboration des différentes parties structurales.
- Les éléments caractéristiques sont: piliers, voute d'arêtes, charpente, arcs-boutants, pinacles et contreforts.

- Fonctionnement statique sous l'action du poids propre.
- Le concept fondamental est que l'arc et la voûte sont des structures qui portent les charges verticales grâce à la présence d'une force de contraste, la poussée horizontale.
- Cette poussée doit être ramenée en fondation.
- Ceci est assuré par les arcsboutants et les contreforts.
- Cette organisation statique est caractéristique de l'art gothique.

- Fonctionnement sous l'action du vent: le vent produit une poussée horizontale sur la partie haute.
- Cette poussée est reportée en fondation par les parties rectilignes des arcs-boutants et par les contreforts, avec l'aide des pinacles.
- La poussée passé du côté au vent à celui sous le vent aussi à travers la charpente, notamment avec les entraits.
- Le poids de la charpente, en outre, contribue fortement à l'équilibre du mur gouttereau: une charpente légère est un contresens structural.
- La charpente revêt donc un rôle fondamental dans l'équilibre d'une cathédrale, elle n'est pas qu'une structure de couverture.

Les raisons d'une recherche: état de l'art

- La question est: quel est le vent capable de causer la ruine structurale d'une cathédrale gothique?
- Très peu d'études concernent ce problème:
 - R. Mark (Univ. Princeton), photo-élasticité 2D, '70-'80
 - M. Como (Univ. Rome 2), analyse limite 2D, 2013, 2015
- Problème: théorie inadequates, schémas plans
- Objectif: simulation numérique sur un modèle 3D

Architecture et dimensions de Notre Dame

Objet de l'étude: Notre Dame

Une structure élaborée...et fragile

Les arcs boutants

 Parmi les plus grands au monde, ils ont une volée de ~12 m

Le modèle numérique

 Modèle réalisé à partir du relevé laser 3D de A. Tallon

 1×10^{7}

 Δf_m^{-1}

 $\varDelta f_m^{-10}$

 $\varDelta {f_m}^{20}$

- Δu_m

 1×10^{6}

Modélisation du vent et du matériau

• Modèle de vent: variation avec une loi en puissance

$$v = \begin{cases} v_0 & \text{if } v \le v_0 \\ v_0 \left(\frac{z}{z_0}\right)^{\alpha} & \text{if } v > v_0 \end{cases}$$

$$z_0 = 10m, \quad \alpha = 0.35$$

$$p = p_w + p_l = \frac{1}{2}C_D\rho v^2,$$

 $p_w = 2p_l, \quad C_D = 1.5$

 Matériau non linéaire endommageable (Hillerborg et al, 1976)

Critère d'évaluation de la vitesse critique de vent

- Contrôle des déplacements: le vent critique produit des déplacements illimités de la clé de voute
- Si le diagramme des déplacements se stabilise, la cathédrale a atteint un état d'équilibre, autrement c'est la ruine structurale

Le mécanisme de ruine

Les effets de l'incendie du 15 Avril 2019

 Ce modèle nous a permis de quantifier les effets des destructions structurales causées par l'incendie

- Le modèle de la structure a été modifié pour prendre en compte les destructions causées par l'incendie
- La vitesse du vent critique passe de ~222 km/h à ~90 km/h (-60%)

Une recherche expérimentale

- La distribution de la pression du vent sur une cathédrale gothique reste un problème ouvert
- C'est un cas où la simulation numérique ne peut toujours pas résoudre le problème de manière efficace

Expérimentation dans la soufflerie avec couche limite atmosphérique de l'Université de Florence

Le modèle physique

Modèle 1/200 réalisé à l'I2M par impression 3D

 Le modèle ainsi réalisé a été fortement instrumenté (~1200 capteurs de pression)

Tests en soufflerie

- Tests avec ou sans environnement
- Evaluation de l'influence de l'environnement

• Visualisations du flux

Cartographie des pressions du vent sur la cathédrale

• Variation de la pression du vent avec la direction

La mécanique comme instrument d'archéologie synthétique

Mécanique des structures et archéologie

- Dans différentes études on a rencontré des questions d'ordre historique qui attendent encore une réponse
- En particulier: quelle était la pensée constructive des anciens bâtisseurs (peu importe si correcte ou pas) ?
- Dans certains cas la mécanique des structures et la simulation numérique peuvent aider

 Le Panthéon et Notre Dame sont encore deux exemples typiques de ça

Une étude sur les fissures du dome du Panthéon

- 1934: Terenzio découvre les 14 grandes fissures du dome
- Ces fissures ont une direction méridienne et s'arrêtent à ~ 57°, où les contraintes selon les parallèles deviennent de compression
- Selon Terenzio, les fissures se sont produites immédiatement après la construction, car les briques utilisées pour les réparer portent les mêmes marques que celles du Panthéon

- La question est : les fissures sont liées aux processus de conception du dome et en particulier à la présence des anneaux sur le bas du dome?
- Deux études tirent des conclusions opposées:
 - Mark & Hutchinson (1986): les Romains savaient que les fissures étaient inévitables et qui se formaient très rapidement et pour garantir l'équilibre, dans un mécanismes de contre-balancier, avaient placé les anneaux sur le dome
 - Brune and Perucchio (2010): les anneaux servaient seulement à réduire la contrainte de traction dans le bas du dome
- Les deux études s'appuyaient sur deux modèles FEM très (trop) réduits

FF model of

Mark & Hutchinson

FE model of

Brune & Perucchio

Max=0.66E5Pa

- Pour établir si Mark & Hutchinson ont raison, il fallait montrer que les fissures pouvaient effectivement apparaître tôt après la construction du dome
- Nous avons cherché un mécanisme physique susceptible de produire de telles fissures: c'est le retrait du béton
- Nous avons simulé le retrait par une variation de température et on a fait un calcul en trois étapes: on applique la gravité sur le dome encore supporté par les échafaudages, on fait varier la température et finalement on simule la dépose de l'échafaudage
- La simulation numérique est faite sur le modèle 3D

 Résultat: on retrouve des fissures méridiennes très semblables à celles qui existent

- Mark & Hutchinson avaient peut être raison:
 - probablement les Romains avaient déjà observé ce phénomène de fissuration précoce dans d'autres structures similaires
 - pour garantir l'équilibre avaient alors utilisé les anneaux comme contrepoids

Les arcs-boutants de Notre Dame

- Un vieux débat concerne le fonctionnement des arcs boutants et notamment la conception faite de ces structures de la part des constructeurs.
- La question est: le fait que les structures en pierre ont une faible résistance à la traction a pu inspirer les constructeurs dans leur conception des arcs boutants?
- On a essayé de donner une réponse par l'optimisation topologique appliquée aux matériaux non-résistants à la traction (JNM 2016)
- Actions: gravité et poussée inclinée (pour simuler l'action du vent et la poussée de la voute).
- Contrainte: conserver le 48% du volume d'origine et aucune résistance à la traction.
- Problème plan

• Loi de comportement: 2D isotrope non-symétrique.

 Formulation du problème d'optimisation topologique: problème de minimum avec contrainte: double minimisation de l'énergie complémentaire avec contrainte sur le volume (Allaire & Kohn, 1993)

• Procédure numérique:

 Cas d'étude: les arcs-boutants du choeur de Notre Dame.

- *E_c*=50 Gpa
- *E_t*=10 GPa
- *v*=0.25
- 9 x 24 elements ≈ 0.5 x 0.5 m

 Le résultat montre que probablement l'idée était d'utiliser l'arc boutant comme support à l'extrados plat en pierre, qui travaille en compression.

La charpente de Notre Dame

- L'ancienne charpente de Notre Dame était un chef d'oeuvre du XIII siècle
- Les sources historiques ne nous renseignent pas sur ces structures
- C'est la raison d'une recherche récente:
 - comment fonctionnait cette structure?
 - quelle était la conception structurale de ses bâtisseurs?
- Bien que cette structure ait reçu, même avant l'incendie, une grande attention de la part de historiens, ce type d'étude manquait encore (J Cult Herit, 2021, TEMA, 2022)

Les trois charpentes

- Charpente d'origine remplacée après 1220 (incendie en 1218? En tout cas, changement de la structure)
- Trois charpentes:
 - A. choeur ~1225-30
 - B. nef ~1230-40
 - C. transept ~1843 (Viollet-le-Duc et Lassus)

Charpentes à chevrons formant ferme

 Composition d'une unité structurale: 1 ferme principale + 4 fermettes + jambes + sablières + contreventement

- Le contreventement transfère une partie des charges verticales des fermettes à la ferme principale
- La poussée horizontale des fermettes est transférée à la ferme principale par les sablières, qui travaillent en flexion
- L'entrait travaille donc en traction et la charpente n'applique aucune force horizontale à la structure en pierre
- La poussée du vent n'est pas équilibrée par frottement, mais transférée par les jambes aux corbeaux en pierre en bas des murs gouttereaux
- Le fonctionnement est donc nécessairement 3D

- La simulation permet de confuter certains a priori et fausses idées et de mieux comprendre la pensée structurale des bâtisseurs
- Les résultats montrent en fait que le système à chevrons formant ferme ne distribue pas uniformément la charge sur la structure en pierre
- Cette croyance, fausse, était inspirée par des questions idéologiques et une approche 2D

- La question est: pourquoi ce type de structure?
- La simulation permet de voir que pour les charpentes traditionnelles il faut un nombre beaucoup plus grand d'arbres de diamètre >~40 cm (~65 au lieu de 21)
- Les charpentes à chevron formant ferme peuvent se réaliser avec des arbres de plus petites dimensions, disponibles en plus grande quantité
- La solution trouvée par les gothiques est donc une réponse à un problème écologique: la déforestation de la France du moyen âge

Les schémas statiques

- Le changement de schéma entre la charpente du choeur et celle de la nef montre une maturation de la perception structurale: la rigidité est plus forte, pour un poids équivalent
- Ce fait est confirmé aussi per une analyse dynamique: la fréquence de vibration de la nef est sensiblement plus forte de celle du choeur
- Une meilleure conception en rigidité est conceivable sur la base de l'expérience

Conclusion

- La mécanique et ses outils de simulation sont aujourd'hui un partenaire incontournables des études sur le patrimoine, à la fois pour:
 - · la préservation des monuments
 - leur mise en sécurité
 - · la comprehension de la pensée des anciens bâtisseurs

Mercí pour votre attentíon